# VMware Horizon Mirage simplified endpoint management



**vm**ware

Managing the wide variety of notebooks and desktops in an organization has its challenges. If your IT staff rolls out upgrades and updates manually or uses sub-par management software to automate the process, the resulting user downtime and burden on IT time can be very expensive for your business. Among other features, a complete management solution can complete migrations, deliver upgrades, and recover backed up system data for a variety of devices with little IT intervention—it instead lets the management tool do the work.

VMware Horizon Mirage is one such solution for endpoint management that can scale to manage thousands of devices. In our lab tests of VMware Horizon Mirage, we tested a variety of 20 Windows XP notebooks and found that it took minimal IT staff intervention to migrate them to Windows 7, update an application, revert to a previous snapshot, and to perform a complete desktop recovery. Horizon Mirage minimized user downtime to an average of just 24 minutes for the OS migration, with an endpoint reboot of less than two minutes for the application upgrade and reverting to a previous snapshot. What's more, Horizon Mirage was able to do all this while minimizing the effect on network and storage resources, which can save you money in the long run.

As these results show, VMware Horizon Mirage can be a valuable tool for endpoint management that can help free up IT staff and minimize user downtime.



# CONTENTS

| Contents                                               | 2  |
|--------------------------------------------------------|----|
| The challenges of endpoint management                  | 3  |
| OS migrations                                          | 3  |
| Upgrading or adding applications                       | 3  |
| Backup and recovery                                    | 3  |
| Image management                                       | 3  |
| How VMware Horizon Mirage works for you                | 4  |
| A brief look at our testing process                    | 5  |
| The proof: Saving network and storage space            | 5  |
| The proof: Migrating to a new operating system         | 6  |
| The proof: Updating applications                       | 7  |
| The proof: Reverting to a snapshot and recovering data | 8  |
| In conclusion                                          | 9  |
| Appendix A – System configuration information          | 11 |
| Appendix B – Our test bed                              | 15 |
| Appendix C – Detailed test results                     | 16 |
| About Principled Technologies                          | 18 |

### THE CHALLENGES OF ENDPOINT MANAGEMENT

For an organization with thousands, or even hundreds, of employees, managing the systems on which they work can be an enormous task—one that burdens IT staff and creates excessive downtime for end users. An image management solution, such as Horizon Mirage, can streamline standard management tasks such as OS migrations with little disruption for the end user.

#### **OS migrations**

Upgrading a Windows XP device to Windows 7 or migrating an end user's profile and files to a new Windows 7 machine are the two most common approaches to Windows 7 migrations. Horizon Mirage can not only accelerate the process but simultaneously lower risk. Because Mirage takes a full snapshot of the Windows XP system prior to the migration, it is easy to restore the end user to the pre-migration state should anything go wrong. These features can lead to savings in end-user productivity and IT staff time.

#### Upgrading or adding applications

Most often, an organization isn't rolling out a new operating system to devices, but instead upgrading or adding new applications for users to access. With Horizon Mirage, administrators can update or deploy new applications to end users with as little intervention as a reboot. This ensures that employees have the latest tools they need to complete their work and be productive, while minimizing IT staff requirements.

#### **Backup and recovery**

There are occasions when it is necessary to restore a desktop—the hard drive fails, the operating system is corrupted, or the PC is lost, stolen, or damaged. Because Horizon Mirage takes regular snapshots of a PC's configuration—including OS, applications, files, and personalization—administrators can efficiently restore an image of the end user's old system to any replacement device and the user can rapidly get back to work.

#### Image management

The deduplication capabilities of Horizon Mirage don't just make it efficient in storage—they also apply to wide area network (WAN) transfers. This is a great boon for the IT staff that manage the laptop and desktop systems used by remote office workers, those who work at home, and traveling employees. Horizon Mirage centralizes data from these endpoint PCs into the datacenter so that when one of these devices becomes unusable for any reason, IT can rapidly get a replacement device with the image back in the user's hands. This means that work isn't lost, as of up to the last synchronization, and business can continue with minimized interruption.

### HOW VMWARE HORIZON MIRAGE WORKS FOR YOU

Horizon Mirage is an endpoint management solution designed to ease administration of the variety of endpoint devices that an organization typically uses, including notebooks and desktops. Horizon Mirage uses a layered image management scheme capable of separating physical and virtual endpoints into multiple logical layers that the Mirage server then stores and manages. The Horizon Mirage server usually resides in the datacenter. IT manages certain layers, while some layers are uploaded from the endpoints. This technology allows IT staff to determine what goes into the layers IT is managing. The separate layers help because IT can update endpoints while protecting and retaining important end-user files and individual personalization on those endpoints. Horizon Mirage keeps uploading user layers to the Mirage server via a background process on the end-user devices while the devices are online. When an offline user comes back online, synchronization is automatically initiated. A quick scan of an endpoint by Horizon Mirage identifies new and unique data that needs to be synchronized, and compresses it before it is sent across the network. The Mirage deduplication engine stores files only once per storage volume, which can provide significant storage savings over products without deduplication.



Figure 1 shows the VMware Horizon Mirage process.

#### Figure 1: VMware Horizon Mirage allows IT staff to make updates to independent layers for maximum efficiency.

### A BRIEF LOOK AT OUR TESTING PROCESS

We used a variety of 20 clients as a sample Horizon Mirage deployment (though it can scale to thousands of devices). We tested the effect Horizon Mirage had on network and storage space, as well as how it handled OS migration, application upgrades, reverting to snapshots, and disaster recovery. We looked at the time it took for IT to complete the tasks and the downtime the end user would experience.

After completing the Windows 7 migration and both the app layer update and revert to snapshot tasks, restarting the endpoint is necessary to apply the new changes. Either the end user or system administrator can restart the endpoint at any time after completing a task. If necessary, the endpoint restart can be delayed. Performing the reboot will cause some temporary user downtime, and we calculated user downtime from when we chose to reboot the endpoint to when the Windows login screen reappeared, allowing the end user to resume working. The migration completes while the end user is back up and working, which means that the total time for the migration is still completing after the reboot. The user can start working *after* they log into the machine.

For detailed information on our test systems, see <u>Appendix A</u>. For our test setup, see <u>Appendix B</u>. For complete details on how we conducted our testing, see the complete version of this report.<sup>1</sup>

### THE PROOF: SAVING NETWORK AND STORAGE SPACE

Did you know? VMware Horizon Mirage uses deduplication to save you up to 44.5 percent in bandwidth and storage space for your endpoint management server, which can help you meet your targets and save you money in infrastructure costs. A common concern with centralizing data is what effect passing user data over will have on the network. Another issue is the storage space that end users' data takes up. If your server is constantly backing up end user desktops, you might worry about the strain on both resources.

As we found in our hands-on tests, Horizon Mirage addresses these concerns by using deduplication to back up only new or changed user data. This means that it doesn't send and store copies of things you've already saved, which would waste network resources and storage space by passing and saving duplicate data.

Figure 2 shows the total network and storage savings for each client when centralizing using Horizon Mirage. It shows the total size for each centralized image, which includes Windows XP data and user data. When we centralized the clients, which means we added them to the Horizon Mirage Pool, VMware Horizon Mirage needed to store only data that was different between end users. That meant that Horizon Mirage could create a complete system image while only transferring and storing an average of 44.5 percent of the data.

<sup>&</sup>lt;sup>1</sup> <u>www.principledtechnologies.com/vmware/Mirage\_endpoint\_management\_1113\_v2.pdf</u>

| Client number   | Client               | Total personal<br>user data (GB) | Total image size<br>(MB) | Transferred<br>(MB) | Savings |
|-----------------|----------------------|----------------------------------|--------------------------|---------------------|---------|
| Client 01       | Dell Vostro 1000     | 15.7                             | 19,431                   | 11,244              | 42%     |
| Client 02       | Dell Latitude E6400  | 15.6                             | 19,649                   | 8,291               | 58%     |
| Client 03       | Dell Inspiron 1501   | 15.2                             | 18,828                   | 8,000               | 58%     |
| Client 04       | Dell Inspiron E1505  | 15.6                             | 20,323                   | 10,203              | 50%     |
| Client 05       | Sony VGN-FS550       | 15.6                             | 20,132                   | 8,250               | 59%     |
| Client 06       | Dell Inspiron 1501   | 32.4                             | 36,423                   | 21,034              | 42%     |
| Client 07       | Lenovo ThinkPad T61  | 32.2                             | 35,082                   | 17,304              | 51%     |
| Client 08       | Dell Precision M2300 | 32.2                             | 36,324                   | 17,854              | 51%     |
| Client 09       | Lenovo ThinkPad T61  | 32.0                             | 36,474                   | 21,029              | 42%     |
| Client 10       | Dell Inspiron 1520   | 31.9                             | 36,383                   | 18,021              | 50%     |
| Client 11       | HP Compaq 6910p      | 46.7                             | 51,541                   | 29,707              | 42%     |
| Client 12       | Dell Latitude D630   | 46.1                             | 50,857                   | 31,413              | 38%     |
| Client 13       | Dell Latitude E6400  | 46.6                             | 52,113                   | 29,001              | 44%     |
| Client 14       | Lenovo ThinkPad T510 | 46.7                             | 52,215                   | 28,441              | 46%     |
| Client 15       | Dell Latitude E5400  | 46.4                             | 51,988                   | 32,894              | 37%     |
| Client 16       | Dell Latitude D630   | 64.8                             | 71,119                   | 47,116              | 34%     |
| Client 17       | Dell Latitude E5500  | 64.7                             | 70,245                   | 45,113              | 36%     |
| Client 18       | Dell Latitude E5400  | 65.2                             | 70,811                   | 45,245              | 36%     |
| Client 19       | Dell Latitude E6400  | 65.1                             | 69,797                   | 44,108              | 37%     |
| Client 20       | Dell Latitude E6400  | 65.3                             | 70,476                   | 44,974              | 36%     |
| Average savings |                      |                                  |                          |                     | 44.5%   |

Figure 2: Migration times and user downtime for each of the client systems in our tests.

# THE PROOF: MIGRATING TO A NEW OPERATING SYSTEM

Did you know? Using VMware Horizon Mirage to reduce the hands-on time for IT to complete migration tasks frees up staff to innovate elsewhere in the datacenter and focus on improving infrastructure in other ways. By minimizing end-user downtime, the business can keep on moving while you make OS upgrades.

While some management tools can automate minor processes, a powerful tool can handle big tasks such as migrating all of an organization's systems to an upgraded operating system. In a traditional scenario where IT staff need to update each system manually, the cost to the business is high. IT staff must physically retrieve each device and then upgrade the operating system. This can leave employees without their systems for hours and possibly even days. In many cases, IT provides the employee with a loaner system, which only adds to the complexity of the upgrade.

In our labs, we used VMware Horizon Mirage to migrate 20 client notebooks simultaneously from Windows XP operating system to the more recent Windows 7 operating system. This is a common migration that many organizations are currently making or will be making soon.

Completing the migration was easy; it took our technicians only minutes to set up the migration to the notebooks. As Figure 3 shows, the migration was complete on all systems in an average of 1 hour 49 minutes. After IT rolled out the migration, end users could choose when to restart their systems and incur minor downtime to get their systems running Windows 7. Using VMware Horizon Mirage, the user downtime to complete the update was an average of only 24 minutes 3 seconds.

### Time to migrate from Windows XP to Windows 7

Average time to migrate 1:49:40

Average end user downtime 24:03

Figure 3: Even large tasks like migrating operating systems didn't take long with VMware Horizon Mirage, which minimized user downtime to just 24 minutes.

# THE PROOF: UPDATING APPLICATIONS

Did you know? Using Horizon Mirage can also minimize IT staff time and user downtime when you make normal application updates or upgrades. Organizations frequently add new applications to enhance productivity or upgrade applications from older versions. In a manual scenario, this would again take an enormous amount of IT effort and end-user downtime while the upgrades occur. Some solutions that automate this process still require significant effort and downtime, which can further burden the business. Horizon Mirage allows IT staff to update the application layer for each system rather than the entire desktop, which speeds up the process and reduces network contention.

For our hands-on testing, we used Horizon Mirage to deploy Microsoft Office 2010, via a Mirage app layer, on the 20 client systems simultaneously. We found that VMware Horizon Mirage simplified this task and kept downtime to a minimum.

As in the migration scenario, Horizon Mirage did not require significant intervention from our technicians to set up the application layer update with the new application. As Figure 4 shows, the application layer update was complete on all systems in an average of 21 minutes 05 seconds. After IT rolls out the update, users can choose when to restart their systems and incur the minor downtime they need to get their systems running the new app. Using VMware Horizon Mirage, user downtime to complete the Microsoft Office 2010 update was an average of only 1 minute 16 seconds.

### Time to update App layer

Average time to update 21:05

Average end user downtime 1:16

Figure 4: Rolling out a new application to all systems didn't take long with VMware Horizon Mirage, which minimized user downtime to just over 1 minute.





With such little downtime for end users when using Horizon Mirage, business productivity no longer has to take a hit when it's time to send out application upgrades.

# THE PROOF: REVERTING TO A SNAPSHOT AND RECOVERING DATA

Did you know? Horizon Mirage lets you decide how often you would like to back up user data. Horizon Mirage then uses intelligent deduplication technologies to reduce the impact on your valuable network and storage resources. Mistakes happen every day. Sometimes they are relatively small—a user deletes a document that he or she is working on and can't recover it. Other times, mistakes are larger—a user leaves his or her notebook behind at the coffee shop, and it's gone when they head back to get it. Either way, Horizon Mirage can help users pick back up working wherever they left off. Horizon Mirage takes snapshots of each system image and stores that data on the central server. As a result, end-user can access their personal data from their systems using the latest available snapshot in Mirage.

In our labs, we simultaneously rolled back the system images of our 20 clients to a previous version, as if these users all needed to revert to get back lost user data and applications. Again, the setup for this was a simple process.

We found that Horizon Mirage could revert all 20 systems to a previous complete image snapshot in just over 22 minutes on average, and end users had to experience an average of only 1 minute 16 seconds of downtime (see Figure 5). All of this occurred with no data loss.

#### Time to revert to snapshot

Average time to revert 22:28

Average end user downtime 1:16

Figure 5: Reverting the systems to a previous snapshot didn't take long with VMware Horizon Mirage, which minimized user downtime to just over 1 minute.



In the event that you don't have a system left to revert to a previous snapshot, such as when a system is lost or stolen or irreparably damaged, Horizon Mirage again provides a solution. IT staff can simply take a replacement notebook, locate a snapshot from the old system, and update the new system with the user data so that there would be no difference in data between the old system and the new one.

We tested Horizon Mirage in a disaster recovery scenario, executing a full system restore on three sample client notebooks from different generations running Windows 7 Enterprise as their base OS and using different processors. We found that it took Horizon Mirage an average of 48 minutes, 59 seconds to complete this process on the devices (see Figure 6). This means that even in the worst-case disaster scenario, an employee would be back to work with little downtime—something unheard of with traditional endpoint management. Keeping data safe and employees working in such cases can help you meet project deadlines and help your bottom line.

| Original device         | New device               | Total image size to restore (MB) | Total time to restore |  |
|-------------------------|--------------------------|----------------------------------|-----------------------|--|
| Intel Core 2 Duo T8100  | Intel Core 2 Duo P8400   | 10.421                           | 0.12.12               |  |
| @2.10 GHz               | @2.26 GHz                | 15,431                           | 0.43.13               |  |
| Intel Core Duo T2050 @  | Intel Core 2 Duo T7700 @ | 20 222                           | 0:47:27               |  |
| 2.00 GHz                | 2.40 GHz                 | 20,323                           |                       |  |
| AMD Turion TL-56 @ 1.80 | Intel Core 2 Duo T7250 @ | 10.640                           | 0.56.17               |  |
| GHz                     | 2.00 GHz                 | 19,049                           | 0.50.17               |  |
| Average time            |                          |                                  | 0:48:59               |  |

Figure 6: Total full system restore times for three clients in our disaster recovery scenario.

# **IN CONCLUSION**

Abandoning manual endpoint management or subpar endpoint administration solutions can reduce user down time and have a significant effect on your bottom line. By switching to a comprehensive, automated image management solution, like Horizon Mirage, you can reduce the burden on IT staff and minimize the impact on your end users. In addition, Horizon Mirage provides centralized backup and OS/HW migration.

Through our hands-on tests, we found that Horizon Mirage offered significant advantages for managing end user devices. It didn't take our technicians much time to get the software working to migrate operating systems, update application layers, revert to previous snapshots, and recover a desktop. With Horizon Mirage, the new OS was available to all systems in an average of just 1 hour 49 minutes; the new application update took 21 minutes, the snapshot reversion took 22 minutes, and the desktop recovery took 48 minutes. And that's just the time the software was working to make these updates—end users' work was not affected during this time. Horizon Mirage minimized end-user downtime as well, with the migration causing just 24 minutes of downtime, and the other updates taking just a few minutes. And by using deduplication, the software was able to reduce data actually transferred from the endpoint to the Mirage Server by 44.5 percent, by only sending new or changed information over the network to be stored.

As our tests show, Horizon Mirage can be a valuable tool for endpoint management that helps free up IT staff and minimize user downtime.

# **APPENDIX A – SYSTEM CONFIGURATION INFORMATION**

Figure 7 provides detailed configuration information for the test systems.

|          | Brand/model             | CPU                                         | Memory       | Disk                                          | Network adapter              |
|----------|-------------------------|---------------------------------------------|--------------|-----------------------------------------------|------------------------------|
| Client01 | Dell Vostro 1000        | AMD Turion 64 X2<br>TL-60 2 GHz             | 3GB PC2-4300 | Seagate ST980811AS<br>80GB                    | Broadcom 440x<br>100Mbps     |
| Client02 | Dell Latitude<br>E6400  | Intel Core 2 Duo<br>P8600 2.4 GHz           | 4GB PC2-4300 | Western Digital<br>WD1600BJKT-75F4T0<br>160GB | Intel 82567LM 1<br>Gbps      |
| Client03 | Dell Inspiron 1501      | AMD Turion 64 X2<br>TL-50 2.4 GHz           | 1GB PC2-4300 | Fujitsu MHV2080BH<br>80GB                     | Broadcom 440x<br>100Mbps     |
| Client04 | Dell Inspiron<br>E1505  | Intel Core Duo<br>T2050 1.6 GHz             | 1GB PC2-4200 | Fujitsu MHV2080BH<br>80GB                     | Broadcom 440x<br>100Mbps     |
| Client05 | Sony VGN-FS550          | Intel Pentium<br>M730 1.6 GHz               | 1GB PC-2700  | Hitachi DK23FA-80<br>80GB                     | Intel PRO 100 Mbps           |
| Client06 | Dell Inspiron 1501      | AMD Turion 64 X2<br>Mobile TL-56 1.8<br>GHz | 1GB PC2-4200 | Hitachi<br>HTS51680J9SA00<br>80GB             | Broadcom 440x<br>100Mbps     |
| Client07 | Lenovo ThinkPad<br>T61  | Intel Mobile Core 2<br>Duo T7700 2.4 GHz    | 2GB PC2-5300 | Hitachi<br>HTS51680J9SA00<br>80GB             | Intel 82566MM 1<br>Gbps      |
| Client08 | Dell Precision<br>M2300 | Intel Core 2 Duo<br>T7500 2.2 GHz           | 1GB PC2-5300 | Seagate<br>ST9160411ASG<br>160GB              | Broadcom NetXtreme<br>1 Gbps |
| Client09 | Lenovo ThinkPad<br>T61  | Intel Core 2 Duo<br>T7100 1.8 GHz           | 2GB PC2-5300 | Hitachi<br>HTS541680J9SA00<br>80GB            | Intel 82566MM 1<br>Gbps      |
| Client10 | Dell Inspiron 1520      | Intel Core 2 Duo<br>T7500 2.2 GHz           | 2GB PC2-5300 | Toshiba M8037GSX<br>80GB                      | Broadcom 440x<br>100Mbps     |
| Client11 | HP Compaq 6910p         | Intel Core 2 Duo<br>T7300 2.0 GHz           | 1GB PC2-5300 | Seagate ST980811AS<br>80GB                    | Intel 82566MM 1<br>Gbps      |
| Client12 | Dell Latitude D630      | Intel Core 2 Duo<br>T7250 2 GHz             | 1GB PC2-5300 | Hitachi<br>HTS542516K9SA00<br>160GB           | Broadcom NetXtreme<br>1 Gbps |
| Client13 | Dell Latitude<br>E6400  | Intel Core 2 Duo<br>P8600 2.4 GHz           | 4GB PC2-6400 | Seagate<br>ST9160411ASG<br>160GB              | Intel 82567LM 1<br>Gbps      |
| Client14 | Lenovo ThinkPad<br>T510 | Intel Core i5 560m<br>2.6 GHz               | 4GB PC3-8500 | Hitachi<br>HTS725032A9A364<br>320GB           | Intel 82567LM 1<br>Gbps      |
| Client15 | Dell Latitude<br>E5400  | Intel Core 2 Duo<br>T8400 2.4 GHz           | 1GB PC2-6400 | Samsung HM250HI<br>250 GB                     | Broadcom NetXtreme<br>1 Gbps |
| Client16 | Dell Latitude D630      | Intel Core 2 Duo<br>T8100 2.1 GHz           | 1GB PC2-5300 | Hitachi<br>HTS722080K9A300<br>80GB            | Broadcom NetXtreme<br>1 Gbps |

|          | Brand/model            | CPU                               | Memory       | Disk                         | Network adapter              |
|----------|------------------------|-----------------------------------|--------------|------------------------------|------------------------------|
| Client17 | Dell Latitude<br>E5500 | Intel Core 2 Duo<br>T7250 2.0 GHz | 2GB PC2-6400 | Seagate<br>ST9120312AS 120GB | Broadcom NetXtreme<br>1 Gbps |
| Client18 | Dell Latitude<br>E5400 | Intel Core 2 Duo<br>T7250 2.0 GHz | 2GB PC2-6400 | Seagate<br>ST9120312AS 120GB | Broadcom NetXtreme<br>1 Gbps |
| Client19 | Dell Latitude<br>E6400 | Intel Core 2 Duo<br>P8700 2.5 GHz | 2GB PC2-6400 | Seagate<br>ST9120312AS 120GB | Intel 82567LM 1<br>Gbps      |
| Client20 | Dell Latitude<br>E6400 | Intel Core 2 Duo<br>P8400 2.3 GHz | 2GB PC2-6400 | Seagate<br>ST9120312AS 120GB | Intel 82567LM 1<br>Gbps      |

Figure 7: System configuration information for the test systems.

Figure 8 provides detailed information for the test storage. We configured a 1TB LUN on a hybrid Dell EqualLogic PS-6110XS storage array to host all Horizon Mirage infrastructure.

| Storage array                           | Dell EqualLogic PS-6110XS |
|-----------------------------------------|---------------------------|
| Number of storage arrays                | 1                         |
| Number of storage controllers per array | 2                         |
| RAID level                              | 6 (accelerated)           |
| Firmware version                        | 6.0.0                     |
| Number of drives, type 1                | 7                         |
| Model number                            | LB400M                    |
| Drive size (GB)                         | 400GB                     |
| Drive buffer size (MB)                  | N/A                       |
| Drive RPM                               | N/A                       |
| Drive type                              | SSD                       |
| Number of drives, type 2                | 17                        |
| Model number                            | ST9600205SS               |
| Drive size (GB)                         | 600GB                     |
| Drive buffer size (MB)                  | 16MB                      |
| Drive RPM                               | 10K                       |
| Drive type                              | 6Gb SAS 2.5"              |

Figure 8: Detailed configuration information for the Dell EqualLogic PS-6110XS storage array.

Figure 9 provides detailed information for the test server.

| System                              | Cisco UCS B200 M3 server |
|-------------------------------------|--------------------------|
| General                             |                          |
| Number of processor packages        | 2                        |
| Number of cores per processor       | 8                        |
| Number of hardware threads per core | 2                        |
| System power management policy      | OS Control               |

| System                            | Cisco UCS B200 M3 server            |
|-----------------------------------|-------------------------------------|
| CPUs                              |                                     |
| Vendor                            | Intel                               |
| Name                              | Xeon                                |
| Model number                      | E5-2690                             |
| Stepping                          | 6                                   |
| Socket type                       | LGA2011                             |
| Core frequency (GHz)              | 2.90                                |
| Bus frequency                     | 8.0 GT/s                            |
| L1 cache                          | 32 KB + 32 KB                       |
| L2 cache                          | 256 KB (per core)                   |
| L3 cache                          | 20 MB                               |
| Platform                          |                                     |
| Vendor and model number           | Cisco UCS B200 M3                   |
| Motherboard model number          | Cisco FCH153271DA                   |
| BIOS name and version             | Cisco B200M3.2.0.2a.0.0.22420121123 |
| BIOS settings                     | Default                             |
| Memory module(s)                  |                                     |
| Total RAM in system (GB)          | 192                                 |
| Vendor and model number           | Samsung M393B2G70BH0-YK0            |
| Туре                              | PC3L-12800R                         |
| Speed (MHz)                       | 1,600                               |
| Speed running in the system (MHz) | 1,333                               |
| Size (GB)                         | 16                                  |
| Number of RAM module(s)           | 12                                  |
| Chip organization                 | Double-sided                        |
| Rank                              | Dual                                |
| Hard disk                         |                                     |
| Vendor and model number           | Seagate ST9146803SS                 |
| Number of disks in system         | 2                                   |
| Size (GB)                         | 146                                 |
| RPM                               | 15,000                              |
| Туре                              | SAS                                 |
| RAID controller                   |                                     |
| Vendor and model                  | LSI MegaRAID SAS 2004               |
| Controller firmware               | 20.10.1-0061                        |
| Operating system                  |                                     |
| Name                              | VMware ESXi 5.5.0                   |
| Build number                      | 1331820                             |
| Language                          | English                             |
| Operating system power profile    | Maximum Performance                 |
| I/O Adapters                      |                                     |
| Vendor and model number           | Cisco UCS-VIC-M82-4P                |
| Туре                              | mLOM                                |

Figure 9: Detailed configuration information for the server we used in our tests.

Figure 10 presents the infrastructure layout we used to configure the VMware Horizon Mirage environment.

| VM name             | Hosted OS                  | Role (s)                             | Server         | Memory | # of<br>vCPUs |
|---------------------|----------------------------|--------------------------------------|----------------|--------|---------------|
| AD01                | Win 2008 R2 x64 Enterprise | AD Domain controller, DHCP, DNS, NTP | Infrastructure | 4 GB   | 2             |
| Mirage Server       | Win 2008 R2 x64 Enterprise | Mirage server, SQL server            | Infrastructure | 12 GB  | 8             |
| FileServer01        | Win 2008 R2 x64 Enterprise | File Server                          | Infrastructure | 8 GB   | 4             |
| Windows 7<br>Master | Win 2008 R2 x64 Enterprise | Mirage Windows 7 reference VM        | Infrastructure | 2 GB   | 1             |

Figure 10: Layout of the infrastructure environment in out tests.

# **APPENDIX B – OUR TEST BED**

Figure 11 shows a diagram of our test bed.



Figure 11: Test bed diagram.

For complete details on how we conducted our testing, see the complete version of this report at www.principledtechnologies.com/vmware/Mirage endpoint management 1113.pdf.

# **APPENDIX C – DETAILED TEST RESULTS**

Figure 12 shows the time it took to migrate each client from Windows XP to Windows 7. The migration completed in an average of 1 hour 49 minutes, with an average of 24 minutes 3 seconds user downtime.

| Client number | Client               | Migration time | User downtime |
|---------------|----------------------|----------------|---------------|
| Client 01     | Dell Vostro 1000     | 1:55:41        | 0:25:03       |
| Client 02     | Dell Latitude E6400  | 1:04:42        | 0:15:50       |
| Client 03     | Dell Inspiron 1501   | 2:07:44        | 0:28:32       |
| Client 04     | Dell Inspiron E1505  | 2:23:37        | 0:29:24       |
| Client 05     | Sony VGN-FS550       | 2:47:03        | 0:35:13       |
| Client 06     | Dell Inspiron 1501   | 2:11:30        | 0:29:34       |
| Client 07     | Lenovo ThinkPad T61  | 1:27:07        | 0:20:17       |
| Client 08     | Dell Precision M2300 | 1:27:27        | 0:20:35       |
| Client 09     | Lenovo ThinkPad T61  | 1:41:48        | 0:26:18       |
| Client 10     | Dell Inspiron 1520   | 1:29:57        | 0:21:01       |
| Client 11     | HP Compaq 6910p      | 1:47:20        | 0:23:34       |
| Client 12     | Dell Latitude D630   | 1:31:28        | 0:21:05       |
| Client 13     | Dell Latitude E6400  | 1:23:45        | 0:18:58       |
| Client 14     | Lenovo ThinkPad T510 | 1:06:21        | 0:15:42       |
| Client 15     | Dell Latitude E5400  | 1:32:31        | 0:20:15       |
| Client 16     | Dell Latitude D630   | 2:05:45        | 0:23:01       |
| Client 17     | Dell Latitude E5500  | 1:51:27        | 0:35:30       |
| Client 18     | Dell Latitude E5400  | 2:15:14        | 0:37:12       |
| Client 19     | Dell Latitude E6400  | 2:10:49        | 0:16:51       |
| Client 20     | Dell Latitude E6400  | 2:12:03        | 0:17:12       |
| Average time  |                      | 1:49:40        | 0:24:03       |

Figure 12: Migration times and user downtime for each of the client systems in our tests.

Figure 13 shows the time it took to roll out Microsoft Office 2010 on each client. The application layer update completed in an average of 21 minutes 05 seconds, with an average of 1 minute 16 seconds user downtime.

| Client number | Client               | Update time | User downtime |
|---------------|----------------------|-------------|---------------|
| Client 01     | Dell Vostro 1000     | 0:17:13     | 0:01:32       |
| Client 02     | Dell Latitude E6400  | 0:10:52     | 0:01:14       |
| Client 03     | Dell Inspiron 1501   | 0:31:27     | 0:01:13       |
| Client 04     | Dell Inspiron E1505  | 0:31:31     | 0:01:12       |
| Client 05     | Sony VGN-FS550       | 0:44:22     | 0:01:15       |
| Client 06     | Dell Inspiron 1501   | 0:31:17     | 0:01:25       |
| Client 07     | Lenovo ThinkPad T61  | 0:17:20     | 0:01:22       |
| Client 08     | Dell Precision M2300 | 0:20:09     | 0:01:24       |
| Client 09     | Lenovo ThinkPad T61  | 0:20:13     | 0:01:24       |
| Client 10     | Dell Inspiron 1520   | 0:17:11     | 0:01:14       |
| Client 11     | HP Compaq 6910p      | 0:25:26     | 0:01:29       |
| Client 12     | Dell Latitude D630   | 0:25:17     | 0:01:19       |
| Client 13     | Dell Latitude E6400  | 0:11:16     | 0:01:15       |
| Client 14     | Lenovo ThinkPad T510 | 0:11:22     | 0:01:06       |

| Client number | Client              | Update time | User downtime |
|---------------|---------------------|-------------|---------------|
| Client 15     | Dell Latitude E5400 | 0:21:11     | 0:01:04       |
| Client 16     | Dell Latitude D630  | 0:20:32     | 0:01:03       |
| Client 17     | Dell Latitude E5500 | 0:20:51     | 0:01:26       |
| Client 18     | Dell Latitude E5400 | 0:16:47     | 0:01:15       |
| Client 19     | Dell Latitude E6400 | 0:13:38     | 0:01:07       |
| Client 20     | Dell Latitude E6400 | 0:13:45     | 0:01:07       |
| Average time  |                     | 0:21:05     | 0:01:16       |

Figure 13: Update times and user downtime for each of the client systems in our tests.

Figure 14 shows the time it took to revert to a snapshot on each client. This took an average of 22 minutes 28 seconds, with an average of 1 minute 16 seconds user downtime.

| Client number | Client               | Time to revert | User downtime |
|---------------|----------------------|----------------|---------------|
| Client 01     | Dell Vostro 1000     | 0:17:18        | 0:01:32       |
| Client 02     | Dell Latitude E6400  | 0:11:21        | 0:01:14       |
| Client 03     | Dell Inspiron 1501   | 0:24:55        | 0:01:13       |
| Client 04     | Dell Inspiron E1505  | 0:26:00        | 0:01:12       |
| Client 05     | Sony VGN-FS550       | 0:33:29        | 0:01:15       |
| Client 06     | Dell Inspiron 1501   | 0:26:23        | 0:01:25       |
| Client 07     | Lenovo ThinkPad T61  | 0:29:52        | 0:01:22       |
| Client 08     | Dell Precision M2300 | 0:30:07        | 0:01:24       |
| Client 09     | Lenovo ThinkPad T61  | 0:18:09        | 0:01:24       |
| Client 10     | Dell Inspiron 1520   | 0:31:22        | 0:01:14       |
| Client 11     | HP Compaq 6910p      | 0:21:17        | 0:01:29       |
| Client 12     | Dell Latitude D630   | 0:17:34        | 0:01:19       |
| Client 13     | Dell Latitude E6400  | 0:10:34        | 0:01:15       |
| Client 14     | Lenovo ThinkPad T510 | 0:11:05        | 0:01:06       |
| Client 15     | Dell Latitude E5400  | 0:13:53        | 0:01:04       |
| Client 16     | Dell Latitude D630   | 0:15:13        | 0:01:03       |
| Client 17     | Dell Latitude E5500  | 0:17:18        | 0:01:26       |
| Client 18     | Dell Latitude E5400  | 0:34:26        | 0:01:15       |
| Client 19     | Dell Latitude E6400  | 0:30:42        | 0:01:07       |
| Client 20     | Dell Latitude E6400  | 0:28:30        | 0:01:07       |
| Average time  |                      | 0:22:28        | 0:01:16       |

Figure 14: Reverting to snapshot times and user downtime for each of the client systems in our tests.

### **ABOUT PRINCIPLED TECHNOLOGIES**



Principled Technologies, Inc. 1007 Slater Road, Suite 300 Durham, NC, 27703 www.principledtechnologies.com We provide industry-leading technology assessment and fact-based marketing services. We bring to every assignment extensive experience with and expertise in all aspects of technology testing and analysis, from researching new technologies, to developing new methodologies, to testing with existing and new tools.

When the assessment is complete, we know how to present the results to a broad range of target audiences. We provide our clients with the materials they need, from market-focused data to use in their own collateral to custom sales aids, such as test reports, performance assessments, and white papers. Every document reflects the results of our trusted independent analysis.

We provide customized services that focus on our clients' individual requirements. Whether the technology involves hardware, software, Web sites, or services, we offer the experience, expertise, and tools to help our clients assess how it will fare against its competition, its performance, its market readiness, and its quality and reliability.

Our founders, Mark L. Van Name and Bill Catchings, have worked together in technology assessment for over 20 years. As journalists, they published over a thousand articles on a wide array of technology subjects. They created and led the Ziff-Davis Benchmark Operation, which developed such industry-standard benchmarks as Ziff Davis Media's Winstone and WebBench. They founded and led eTesting Labs, and after the acquisition of that company by Lionbridge Technologies were the head and CTO of VeriTest.

Principled Technologies is a registered trademark of Principled Technologies, Inc. All other product names are the trademarks of their respective owners.

Disclaimer of Warranties; Limitation of Liability:

PRINCIPLED TECHNOLOGIES, INC. HAS MADE REASONABLE EFFORTS TO ENSURE THE ACCURACY AND VALIDITY OF ITS TESTING, HOWEVER, PRINCIPLED TECHNOLOGIES, INC. SPECIFICALLY DISCLAIMS ANY WARRANTY, EXPRESSED OR IMPLIED, RELATING TO THE TEST RESULTS AND ANALYSIS, THEIR ACCURACY, COMPLETENESS OR QUALITY, INCLUDING ANY IMPLIED WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE. ALL PERSONS OR ENTITIES RELYING ON THE RESULTS OF ANY TESTING DO SO AT THEIR OWN RISK, AND AGREE THAT PRINCIPLED TECHNOLOGIES, INC., ITS EMPLOYEES AND ITS SUBCONTRACTORS SHALL HAVE NO LIABILITY WHATSOEVER FROM ANY CLAIM OF LOSS OR DAMAGE ON ACCOUNT OF ANY ALLEGED ERROR OR DEFECT IN ANY TESTING PROCEDURE OR RESULT.

IN NO EVENT SHALL PRINCIPLED TECHNOLOGIES, INC. BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH ITS TESTING, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL PRINCIPLED TECHNOLOGIES, INC.'S LIABILITY, INCLUDING FOR DIRECT DAMAGES, EXCEED THE AMOUNTS PAID IN CONNECTION WITH PRINCIPLED TECHNOLOGIES, INC.'S TESTING. CUSTOMER'S SOLE AND EXCLUSIVE REMEDIES ARE AS SET FORTH HEREIN.